If $A$ is a symmetric matrix, then matrix $M'AM$is
Symmetric
Skew-symmetric
Hermitian
Skew-Hermitian
(a) $(M'AM)' = M'A'M = M'AM$
( $A$ is symmetric. Hence $M'AM$ is a symmetric matrix).
For any square matrix $A$, $A{A^T}$ is a
Let $P =\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$ where $\alpha \in R .$ Suppose $Q =\left[ q _{ ij }\right]$ is a matrix satisfying $PQ = kI _{3}$ for some non-zero $k \in R .$ If $q_{23}=-\frac{k}{8}$ and $|Q|=\frac{k^{2}}{2}$, then $\alpha^{2}+ k ^{2}$ is equal to………..
If $A = \left[ {\begin{array}{*{20}{c}} 1&1\\ 0&1 \end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}} {\frac{{\sqrt 3 }}{2}}&{\frac{1}{2}}\\ {\frac{{ – 1}}{2}}&{\frac{{\sqrt 3 }}{2}} \end{array}} \right]$ , then $(BB^TA)^5$ is equal to
Given $A$ and $C$ are involutary matrices and $B$ is a non-singular matrix, then $(AB^{-1}C)^{-1}$ is equal to –
Let $A$ be a non-zero periodic matrix with period $4$ and $A^{12} + B =I$, where $I$ is identity matrix and $B$ is any square matrix of same order as of $A$. Matrix product $AB$ is equal to
Confusing about what to choose? Our team will schedule a demo shortly.